
Granular style transfer instrument with differentiable logic
gate networks - Alec Denny

BeagleBoard.org
Apr 17, 2024

Table of contents

1 Introduction 1
1.1 Summary links . 1
1.2 Status . 1
1.3 Proposal . 1
1.4 About . 1

2 Project 2
2.1 Description . 2
2.2 Software . 3
2.3 Hardware . 4

3 Timeline 5
3.1 Timeline summary . 5
3.2 Timeline detailed . 5
3.3 Community Bonding Period (May 1st - May 26th) . 5
3.4 Coding begins (May 27th) . 5
3.5 Milestone #1, Introductory YouTube video (June 3rd) . 6
3.6 Milestone #2 (June 10th) . 6
3.7 Milestone #3 (June 17th) . 6
3.8 Milestone #4 (June 24th) . 6
3.9 Milestone #5 (July 1st) . 6
3.10 Submit midterm evaluations (July 8th) . 6
3.11 Milestone #6 (July 15th) . 6
3.12 Milestone #7 (July 22nd) . 6
3.13 Milestone #8 (July 29th) . 6
3.14 Milestone #9 (Aug 5th) . 6
3.15 Milestone #10 (Aug 12th) . 7
3.16 Final YouTube video (Aug 19th) . 7
3.17 Final Submission (Aug 24nd) . 7
3.18 Initial results (September 3) . 7

4 Experience and approch 8
4.1 Contingency . 8
4.2 Benefit . 8
4.3 References . 9
4.4 Misc . 9

i

Chapter 1

Introduction

1.1 Summary links

• Contributor: Alec Denny

• Mentors: Jack Armitage, Chris Kiefer

• Code: Google Summer of Code / greybus / cc1352-firmware · GitLab

• GSoC: Google Summer of Code

1.2 Status

This project is currently just a proposal.

1.3 Proposal

1.4 About

• Forum: u/alecdenny (Alec Denny)

• OpenBeagle: alecdenny (Alec Denny)

• Github: alecdenny (Alec Denny)

• School: Columbia College Chicago

• Country: United States

• Primary language: English

• Typical work hours: 8AM-5PM US Pacific

• Previous GSoC participation: N/A

1

https://forum.beagleboard.org/u/alecdenny/summary
https://forum.beagleboard.org/u/jarm/summary
https://forum.beagleboard.org/u/luuma/summary
https://openbeagle.org/gsoc/greybus/cc1352-firmware
https://forum.beagleboard.org/t/embedded-differentiable-logic-gate-networks-for-real-time-interactive-and-creative-applications/37768
https://forum.beagleboard.org/u/alecdenny/summary
https://openbeagle.org/alecdenny
https://github.com/alecdenny

Chapter 2

Project

Project name: Granular style transfer instrument with differentiable logic gate networks

2.1 Description

Create an AI powered granular style transfer algorithm runnable on the bela board with the goal of creating a
usable instrument. The algorithm will allow for users to provide their own style target sample whose timbral
characteristics can be explored through interaction via the microphone or audio input. The synthesis engine
will be based on granular / concatenative synthesis methods, the AI component will be a network that maps
input spectral features to a predicted point in the sample from which to playback audio.

Neural Network: The AI component of the synthesis engine will have input in the form of MFCCs, coefficients
which describe the frequency spectrum in terms of amplitude. MFCCs are like the Fourier transform’s amplitude
spectrum but with amplitude and frequency scaled to match the characteristics of human perception. The
model will use this information to predict from what point in the target sample to play back audio. Based on
input, the network should output the most perceptually similar grain from the sample. To train the network,
MFCCs from each grain of the sample will be input, with the prediction being the time offset at which the
grain occurs in the sample. The neural network itself will be based on differentiable logic gate networks whose
neurons have boolean inputs and outputs, and each perform one of 16 logic gate operations [1]. These networks
can contain fewer neurons and be much smaller because each neuron’s operation can be complex, and weights
do not need to be stored, only which logic gate operation to perform [1].

Output representation will be similar to thermometer format, which is closest to how classification is achieved
in models previously trained by the authors and our mentors. The classification examples use binary adders,
which sum a group of output neurons in order to predict the most likely class. In this case, many output neurons
will be summed to determine from which section of the sample to play back grains from. As an example, if
there are 1000 binary output neurons, when 500 are 1s and 500 are 0s, the output of the model would be
considered 50% time offset in the target sample. Since the resolution is limited, grains will be played back
from around the range specified by the network’s prediction. I have chosen to limit the resolution this way just
based on the capabilities of the models I’ve read about, if there is a way to represent time with more detail
than thermometer format I would be open to using that as well.

In order to feed the model enough data, vocal data will be analyzed and connected to its most similar timbral
points in the sample using algorithms found in concatenative synthesis. This synthetic data can be used to
condition the network for vocal inputs. Ideally the inclusion of this synthetic data will allow for vocal interaction
from the user to navigate the granular synthesis engine. By synthetic data, I am not referring to synthesized
vocal sounds, but rather vocal sounds that have been prepared in the format of MFCCs, and tied to their most
similar grain in the target sample. Concatenative synthesis hosts a family of techniques by which individual
grains of audio can be analyzed, compared and connected to each other based on similarity [2]. Training the
model to replicate this process for inputs with features far outside those of the target sample could allow for
an instrument that is better conditioned for any user input, but here I think focusing on vocal inputs would be
most relevant.

2

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Unary_coding

Granular style transfer instrument with differentiable logic gate networks - Alec Denny

Resynthesis: Resynthesis will rely on the neural network to determine which sample to play back. The user
should be able to record a sample from which to apply a style transfer, or even use live input to the device.
When preparing the training data and collecting input on the instrument, the pitch of each grain should be
determined. While triggering grains, they can be resampled to match the pitch of the input (ideally relatively
close). I would start by just resampling to match pitch between instrument input and model output, but there’s
room for exploration of frequency domain techniques both for matching pitch and timbre. A variety of controls
could be added if time permits, giving the user access to familiar granular synthesis controls.

Potential Controls: - Play Speed: this would control the rate at which the instrument plays through user recorded
loops. Since the MFCCs from performance are translated to grains from the sample, slowing or raising the speed
at which we move through the control audio could allow for a variety of creative uses.

• Mix: Allow the user to mix in the sound of the recorded audio that is controlling the synth.

• Grain Size: change the size of grains played back by the resynthesis engine.

• Grain Trigger Rate: change the rate at which control audio is polled for input to the model (and used to
trigger grain output from the synthesis component).

• Pitch Correction: control the degree to which grains are stretched to match the pitch of control audio.

• Randomness: control the amount of randomness applied to the time offset at which grains are triggered.

Goals: 1. Granular style transfer network using differential logic gate networks

2. Handheld instrument for navigating the network using audio input

Related Work: Here are a few similar instruments and pieces of software. https://gitlab.com/then-try-this/
samplebrain https://dillonbastan.com/store/maxforlive/index.php?product=coalescence https://learn.flucoma.
org https://github.com/ircam-ismm/catart-mubu https://www.xlnaudio.com/products/xo

2.2 Software

Python C++ Max/MSP

2.2. Software 3

https://gitlab.com/then-try-this/samplebrain
https://gitlab.com/then-try-this/samplebrain
https://dillonbastan.com/store/maxforlive/index.php?product=coalescence
https://learn.flucoma.org
https://learn.flucoma.org
https://github.com/ircam-ismm/catart-mubu
https://www.xlnaudio.com/products/xo

Granular style transfer instrument with differentiable logic gate networks - Alec Denny

2.3 Hardware

Bela board Knobs / Buttons microphone Audio I/O

4 Chapter 2. Project

Chapter 3

Timeline

Provide a development timeline with 10 milestones, one for each week of development without an evaluation,
and any pre-work. (A realistic, measurable timeline is critical to our selection process.)

Note: This timeline is based on the official GSoC timeline

3.1 Timeline summary

Date Activity
February 26 Connect with possible mentors and request review on first draft
March 4 Complete prerequisites, verify value to community and request review on second draft
March 11 Finalized timeline and request review on final draft
March 21 Submit application
May 1 Start bonding
May 27 Start coding and introductory video
June 3 Release introductory video and complete milestone #1
June 10 Complete milestone #2
June 17 Complete milestone #3
June 24 Complete milestone #4
July 1 Complete milestone #5
July 8 Submit midterm evaluations
July 15 Complete milestone #6
July 22 Complete milestone #7
July 29 Complete milestone #8
August 5 Complete milestone #9
August 12 Complete milestone #10
August 19 Submit final project video, submit final work to GSoC site and complete final mentor evaluation

3.2 Timeline detailed

3.3 Community Bonding Period (May 1st - May 26th)

GSoC contributors get to knowmentors, read documentation, get up to speed to begin working on their projects

3.4 Coding begins (May 27th)

5

https://developers.google.com/open-source/gsoc/timeline

Granular style transfer instrument with differentiable logic gate networks - Alec Denny

3.5 Milestone #1, Introductory YouTube video (June 3rd)

Explore options for concatenative synthesis (i.e. how to prepare synthetic data). Get acquainted with training
DiffLogic networks.

3.6 Milestone #2 (June 10th)

Prototype DSP, granular synthesis options (maybe in Max). Start the granular synthesis engine.

3.7 Milestone #3 (June 17th)

Generate training data from target samples, generate synthetic data from vocal training data.

3.8 Milestone #4 (June 24th)

Train networks and get them on the board.

3.9 Milestone #5 (July 1st)

Create an interface for training models based on user supplied style targets.

3.10 Submit midterm evaluations (July 8th)

Important: July 12 - 18:00 UTC: Midterm evaluation deadline (standard coding period)

3.11 Milestone #6 (July 15th)

On board granular synthesis engine.

3.12 Milestone #7 (July 22nd)

Develop recording / playback interface.

3.13 Milestone #8 (July 29th)

Add additional parameters and functionality to the synthesis engine.

3.14 Milestone #9 (Aug 5th)

Figure out extra controls, inputs / outputs for the board.

6 Chapter 3. Timeline

Granular style transfer instrument with differentiable logic gate networks - Alec Denny

3.15 Milestone #10 (Aug 12th)

Assemble the instrument and add finishing touches.

3.16 Final YouTube video (Aug 19th)

Submit final project video, submit final work to GSoC site and complete final mentor evaluation

3.17 Final Submission (Aug 24nd)

Important: August 19 - 26 - 18:00 UTC: Final week: GSoC contributors submit their final work product and
their final mentor evaluation (standard coding period)

August 26 - September 2 - 18:00 UTC: Mentors submit final GSoC contributor evaluations (standard coding
period)

3.18 Initial results (September 3)

Important: September 3 - November 4: GSoC contributors with extended timelines continue coding

November 4 - 18:00 UTC: Final date for all GSoC contributors to submit their final work product and final
evaluation

November 11 - 18:00 UTC: Final date for mentors to submit evaluations for GSoC contributor projects with
extended deadline

3.15. Milestone #10 (Aug 12th) 7

Chapter 4

Experience and approch

I have previously used pytorch to train small neural networks for granular synthesis. My college capstone used
simple audio features from analyzing individual grains to try to rearrange source samples into new composi-
tions. here

I have also manipulated small convolutional image synthesis models for a personal project. here

I am currently building the interface for a VST plugin in C++ through which I’ve gained experience with real
time audio code and musical interface design. This project is a collaboration with Nathan Blair. here

I have experience with spectral processing and synthesis. I am currently working on a python framework for
spectral synthesis that mimics the structure of 3d graphics shaders called WavKitchen. here

I make audio / visual art and have coded a variety of visualizers and interfaces for performance which I got the
chance to use all over the US last year.

4.1 Contingency

I studied music technology in a program that focused more on composition and performance, but have taught
myself most of what I know about machine learning, C++ and digital signal processing. If I get stuck, I know I
have experience bringing myself up to speed on these topics, and know where to find resources for them.The
main thing I see myself getting stuck on is programming the board itself, I have limited experience with hard-
ware though I have used arduino before in school.

4.2 Benefit

Generative AI is amajor topic inmusic software / hardware right now. One of themain constraints for developers
right now is the feasibility of running or training models for real time audio applications. Differentiable logic
gate networks offer a novel approach to shrinking models for these use cases. One remaining concern I had
after reviewing the literature was the ability to generate high resolution outputs from the model, or represent
continuous numbers with accuracy and trainability. This network architecture is an approach that pushes the
potential uses for AI on hardware into the realm of generative synthesis in a way that elides some of these
difficulties.

For creatives using AI instruments, the challenges are in interfacing with AI, as well as originality. AI can shrink
very complex synthesis algorithms down to a handful of controls, but can struggle to come up with easily
name-able parameters, or provide the user with too many parameters to possibly feel comfortable using them.
For this project, the control interface is primarily the user’s voice, but potentially any audio or sound in their
immediate environment. Because the synthesis engine is not entirely AI, familiar granular synthesis controls
are also available, adding a level of familiarity to the instrument. Originality with AI instruments poses a
challenge for artists when massive datasets are required for one to work, or outputs could contain copyrighted
material. With this model, artists could train models themselves, with no potential for accidental infringement.

8

https://alecdenny.wordpress.com/
https://www.dropbox.com/scl/fi/mmnkrnr3l7jec3zqjfcbu/iputmyhandinthefiredraft1.mp4?rlkey=nsxpjvotrqmftidh4igbvbsxw&dl=0
https://www.dropbox.com/scl/fi/w75xzhwyjgcfvejkrg8fv/waveshinedemo.mov?rlkey=iuxey52f6hq52pfjvui6uv058&dl=0
https://github.com/alecdenny/wavkitchen

Granular style transfer instrument with differentiable logic gate networks - Alec Denny

The potential benefits for this project would be a working library for generative AI synthesis on the beagle
board, as well as an exploration of the potential use cases for small neural networks in electronic instruments.
The benefits of this project are more geared towards the NIME and music AI communities than specifically the
beagle board community. However I think creating this instrument and allowing users to train models and
upload them to the board could yield a low commitment entry point for those involved in these communities
to be introduced to beagle boards.

This project would yield a reusable neural network architecture, the synthesis component could be greatly
extended. Using frequency domain pitch shifting or cross synthesis techniques could build a variety of instru-
ments on top of the framework of this project. Creating an interface to prepare data and train models for use
on the board could also prove useful for other projects.

4.3 References

1. F Petersen, C. Borgelt, Hilde, H. Kuehne, O. Deussen. Deep Differentiable Logic Gate Net-
works. Neurips. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/
0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf

2. S Diemo, “Concatenative Sound Synthesis: The Early Years,” Journal of New Music Research, vol. 35,
March, 2006. [Online]. Available: https://hal.science/hal-01161361/document

4.4 Misc

to do : have not made merge request yet

4.3. References 9

https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://hal.science/hal-01161361/document

	Introduction
	Summary links
	Status
	Proposal
	About

	Project
	Description
	Software
	Hardware

	Timeline
	Timeline summary
	Timeline detailed
	Community Bonding Period (May 1st - May 26th)
	Coding begins (May 27th)
	Milestone #1, Introductory YouTube video (June 3rd)
	Milestone #2 (June 10th)
	Milestone #3 (June 17th)
	Milestone #4 (June 24th)
	Milestone #5 (July 1st)
	Submit midterm evaluations (July 8th)
	Milestone #6 (July 15th)
	Milestone #7 (July 22nd)
	Milestone #8 (July 29th)
	Milestone #9 (Aug 5th)
	Milestone #10 (Aug 12th)
	Final YouTube video (Aug 19th)
	Final Submission (Aug 24nd)
	Initial results (September 3)

	Experience and approch
	Contingency
	Benefit
	References
	Misc

